Documents pour «IRM»

Documents pour "IRM"
Affiche du document Physique et médecine : l'imagerie médicale

Physique et médecine : l'imagerie médicale

André SYROTA

1h12min08

  • Physique
  • Sciences médicales. Médecine
L'imagerie médicale a sans aucun doute entraîné ces vingt dernières années une transformation radicale dans la façon d'aborder le diagnostic et le suivi thérapeutique. Un diagnostic de localisation d'une lésion cérébrale qui nécessitait un examen clinique long et minutieux par un neurologue expérimenté se fait aujourd'hui avec une précision millimétrique grâce au scanner ou à l'imagerie par résonance magnétique (IRM). Là où le maître entouré de ses élèves démontrait que la lésion ischémique ou tumorale devait siéger au niveau de tel noyau du thalamus (la vérification ayant lieu malheureusement souvent quelques semaines plus tard sur les coupes de cerveau), le neuroradiologue parvient au même résultat en quelques minutes. On pourrait multiplier les exemples ; là où le cardiologue se fiait à son auscultation et à des clichés de thorax, l'échocardiographie montre en temps réel les mouvements des valves cardiaques et la dynamique de la contraction ventriculaire, la scintigraphie myocardique précise la localisation des zones de myocarde ischémique et les anomalies de sa contraction ; demain l'IRM permettra de voir la circulation coronaire et le tissu myocardique et remplacera l'angiographie par voie artérielle. On pourrait encore citer l'échographie en obstétrique, en hépatologie ou en urologie, la scintigraphie dans la détection des lésions de la thyroïde, des métastases osseuses ou de l'embolie pulmonaire. Aujourd'hui la tomographie par émission de positons (TEP) est en train de devenir la méthode incontournable en cancérologie, non pas tant pour le diagnostic du cancer que pour en préciser l'extension, l'existence de métastases, l'évolution sous traitement après chimiothérapie, chirurgie ou radiothérapie ou encore l'apparition de récidives ou de métastases tardives. Au milieu du 19ème siècle, l'inventeur de la médecine expérimentale, Claude Bernard indiquait à Ernest Renan qui l'a relaté, que « l ‘on ne connaîtrait la physiologie que le jour où l'on saura décrire le voyage d'un atome d'azote depuis son entrée dans l'organisme jusqu'à sa sortie». Ce qui était totalement hors de portée du savant de cette époque, connaît en ce début du 21ème siècle une pleine réalisation grâce à une série d'avancées techniques rendues d'abord possibles par la radioactivité et aussi dans une certaine mesure par l'IRM et de toutes façons par la combinaison de plusieurs méthodes lorsqu'on aborde la pathologie. C'est certainement dans la description du voyage fait par le médicament dans le corps que réside aujourd'hui une des avancées les plus intéressantes dans le domaine pharmaceutique. Mais nous verrons aussi que quand nous écoutons, parlons, bougeons, réfléchissons... certaines aires de notre cerveau s'activent. Cette activation électrique et chimique des neurones se traduit par une augmentation du débit sanguin local dans les régions cérébrales concernées par cette activation. La TEP d'abord puis en utilisant les mêmes principes physiologiques, l'IRM aujourd'hui permet de produire des images sensibles au débit sanguin et ce, sans recours à l'injection d'une substance ou molécule particulière. Il ne peut s'agir dans cette conférence de décrire les principes physiques, les indications de toutes ces méthodes et les résultats qu'elles permettent d'obtenir en clinique. Par contre la comparaison de l'origine et de l'évolution de trois de ces méthodes, la radiologie, la médecine nucléaire et l'imagerie par résonance magnétique nucléaire est intéressante. La perspective historique permet en effet de mieux comprendre la genèse, l'évolution et les indications de ces différentes méthodes qui ont toutes leur point de départ dans la physique.
Accès libre
Affiche du document Voir le cerveau penser

Voir le cerveau penser

Denis LE BIHAN

1h16min21

  • Sciences de la vie, Biologie
  • Sciences médicales. Médecine
  • Génie et activités connexes
L'imagerie par Résonance Magnétique (IRM) permet depuis une vingtaine d'année de produire des images de l'anatomie ‘statique' du cerveau, c'est-à-dire des coupes virtuelles montrant les détails des structures cérébrales (matière grise, matière blanche) avec une précision millimétrique. Cette imagerie ‘anatomique' est utilisée par les radiologues pour la détection et la localisation de lésions cérébrales. Plus récemment, l'IRM est aussi devenue ‘fonctionnelle' (IRMf), montrant l'activité des différentes structures qui composent notre cerveau. L'imagerie neurofonctionnelle par IRMf repose sur deux concepts fondamentaux. Le premier, soupçonné depuis l'Antiquité mais clairement mis en évidence au siècle dernier par les travaux du chirurgien français Paul Broca, est que le cerveau n'est pas un organe homogène, mais que chaque région est plus ou moins spécialisée dans sa fonction. Le deuxième, suggéré par l'anglais Sherrington à la fin du siècle dernier, est que les régions cérébrales actives à un moment donné voient leur débit sanguin augmenter. C'est cette augmentation locale et transitoire de débit sanguin, et non directement l'activité des neurones, qui peut être détectée par l'IRMf et par la caméra à émission de positons (autre méthode d'imagerie neurofonctionnelle). En pratique, il suffit donc d'acquérir des images représentant le débit sanguin en chaque point de notre cerveau quand il exécute une tâche particulière (motrice, sensorielle, cognitive,...) et dans une condition de référence neutre. A l'aide d'un traitement informatique de ces images, on peut extraire les régions cérébrales pour lesquelles le débit sanguin a changé entre la condition de contrôle et l'exécution de la tâche et en déduire que ces régions ont participé à cette tâche. Ces régions sont reportées en couleurs sur l'anatomie cérébrale sous-jacente. Bien que l'imagerie neurofonctionnelle, aujourd'hui, ne permette pas de descendre à l'échelle des neurones, les exemples rassemblés dans ces pages tendent à montrer que les circuits cérébraux utilisés par l'activité de ‘pensée' sont communs avec ceux utilisés par des processus de perception ou d'action réels. Ce résultat n'est pas surprenant a priori, si on considère que certaines formes de pensée (créer et voir une image mentale, imaginer une musique, inventer une histoire, évoquer des souvenirs...) ne sont autres que des simulations ou reproductions internes d'évènements que nous avons vécus ou que nous pourrions vivre. Au delà de l'identification des régions impliquées dans les processus cognitifs, des travaux en cours laissent présager qu'un jour nous pourrions peut-être même avoir accès en partie à la nature de l'information traitée par les différentes régions de notre cerveau, et donc, d'une certaine manière, à une petite fraction du contenu de nos pensées...
Accès libre
Affiche du document Voir et étudier les poumons avec l'hélium polarisé

Voir et étudier les poumons avec l'hélium polarisé

Michèle LEDUC

1h09min37

  • Physique
  • Sciences médicales. Médecine
Depuis quelques années se développe aux Etats Unis et en Europe une nouvelle méthode non invasive pour étudier certaines pathologies des poumons. Elle est fondée sur l'imagerie par résonance magnétique (IRM) utilisant du gaz d'hélium 3 inhalé par le patient et préalablement polarisé par pompage optique. La polarisation nucléaire dans un gaz d'hélium 3 peut atteindre 80% avec les techniques existantes et les sources laser actuelles. Ceci correspond à une « hyperpolarisation » considérable, 105 fois plus grande que les polarisations thermiques obtenues dans les champs magnétiques élevés de l'IRM standard. Ce gaz hyperpolarisé peut être utilisé comme source de signaux de résonance magnétique nucléaire (RMN) avec un excellent rapport signal sur bruit. Parmi toutes les applications que ceci suggère dans des disciplines diverses, la possibilité de faire l'image des voies aériennes des poumons a immédiatement suscité un intérêt considérable. En effet l'IRM conventionnelle, fondée sur les protons des tissus, ne peut pas fournir d'image des espaces creux, ni même des tissus du parenchyme pulmonaire. L'hélium « hyperpolarisé » apparaît ainsi comme un outil clinique très prometteur. Il fournit des images de très bonne résolution et renseigne sur la ventilation des voies respiratoires : il donne accès à des images statiques pendant que le patient retient son souffle, à la dynamique de la ventilation pendant l'inspiration et l'expiration et aussi à l'imagerie fonctionnelle. Il permet des études sur l'asthme, l'emphysème, l'obstruction chronique des voies respiratoires, en particulier chez les grands fumeurs, et donne des informations précieuses en cas de chirurgie ou de greffe du poumon. Actuellement se déroulent simultanément des études cliniques sur des malades, des travaux sur des modèles animaux et des développements technologiques visant à adapter les méthodes optiques de polarisation du gaz à un environnement médical. Ces études très pluridisciplinaires associent étroitement physiciens, ingénieurs de la résonance magnétique, radiologues et médecins. Dans cette conférence on rappellera les principes de l'IRM conventionnelle, on expliquera la méthode du pompage optique pour l'hyperpolarisation nucléaire de l'hélium, on décrira les particularités de l'IRM avec hélium, on montrera des images pulmonaires statiques et dynamiques de volontaires sains et de patients atteints de diverses pathologies. Les potentialités cliniques futures seront enfin discutées.
Accès libre
Affiche du document Localiser et identifier une molécule

Localiser et identifier une molécule

Patrick CHAQUIN

1h10min47

  • Chimie, Cristallographie, Mineralogie
Au début du siècle, la caractérisation des molécules consistait essentiellement en tests chimiques donnant naissance à des précipités, des couleurs, voire des odeurs. Ces techniques ont été supplantées par des méthodes physiques, dans lesquelles les molécules, soumises à certaines stimulations fournissent, sous forme de diagramme, une réponse ou spectre. Plusieurs méthodes spectroscopiques étudient l'interaction avec la matière des ondes électromagnétiques dans divers domaines de longueur d'onde. Le domaine de l'infrarouge (IR) permet de reconnaître la présence de certaines liaisons ou groupements d'atomes et fournit une " empreinte digitale " caractéristique. Dans le domaine des ondes radio, la résonance magnétique nucléaire (RMN) s'applique en premier lieu au carbone et à l'hydrogène mais également à de nombreux autres éléments. Cette méthode a connu depuis 1960 d'extraordinaires développements. L'un des plus récents, la RMN à deux dimensions, met en évidence des connexions entre atomes d'où une véritable cartographie moléculaire. Dans le domaine de la lumière visible ou ultaviolette, les renseignements obtenus sont d'une moindre richesse, mais cette spectroscopie, avec d'ailleurs l'IR, permet l'étude de molécules hors de notre atteinte comme celles des atmosphères planétaires ou de l'espace interstellaire. Enfin la spectrométrie de masse (SM) étudie les fragmentations des molécules sous l'effet, par exemple, d'un bombardement d'électrons. Des masses de ces fragments on peut déduire leur formule chimique qui permet de reconstituer la molécule originelle. Par ailleurs, ces spectres fournissent une signature qui, traitée numériquement, permet une identification automatique si la molécule a déjà été répertoriée dans une bibliothèque. Cette technique, couplée avec une méthode de séparation telle que la chromatographie en phase gazeuse est d'une puissance inégalée pour l'analyse de mélanges complexes.
Accès libre
Affiche du document L'imagerie médicale par résonance magnétique

L'imagerie médicale par résonance magnétique

Patrick COZZONE

1h27min52

  • Sciences médicales. Médecine
Le Phénomène de Résonance Magnétique Nucléaire (RMN) découvert en 1946 est relatif aux propriétés magnétiques des noyaux des atomes. En médecine, il a donné naissance à l'Imagerie par Résonance Magnétique (IRM) qui constitue une des avancées les plus importantes de l'histoire de la médecine. L'IRM permet d'obtenir des images anatomiques du corps humain avec une finesse inégalée, sans avoir recours à des radiations ionisantes ou à l'injection de traceurs radioactifs. L'examen par IRM est indolore et peut être répété sans danger. La Spectrométrie de Résonance Magnétique (SRM) est une autre application du phénomène de résonance magnétique dans l'exploration du corps humain. La SRM qui connaît à présent un développement très rapide, analyse et visualise les réactions chimiques qui se produisent dans les tissus et les organes sans avoir à faire de prélèvements (biopsies). On obtient par SRM des images métaboliques du cerveau et de certains autres organes dont les anomalies éventuelles permettent de diagnostiquer de façon très précoce de nombreuses maladies et de quantifier l'effet des médicaments. Une application en plein développement concerne l'angiographie par résonance magnétique (ARM) qui permet la visualisation des vaisseaux de façon non invasive. Enfin, le fonctionnement du cerveau lorsqu'il gère des tâches motrices ou sensorielles peut être suivi par les nouvelles techniques de l'IRM fonctionnelle qui sont basées sur les variations du débit et de l'oxygénation du sang dans le tissu cérébral. Ces différentes modalités de l'Imagerie Médicale par Résonance Magnétique seront illustrées dans leurs applications à l'exploration du cerveau de l'homme.
Accès libre
Affiche du document Le cerveau de la connaissance: physiologie de la cognition et images du cerveau

Le cerveau de la connaissance: physiologie de la cognition et images du cerveau

Bernard MAZOYER

1h17min28

  • Sciences de la vie, Biologie
  • Sciences médicales. Médecine
L'existence de relations entre cerveau et pensée a alimenté de nombreuses querelles philosophiques, et ce en raison de l'absence de techniques d'observation du fonctionnement normal de cet organe. A la fin du 19e siècle, physiologistes et neurochirurgiens ont établi que les fonctions cognitives généraient des modifications localisées de la circulation sanguine cérébrale, et que des stimulations ou des lésions du cortex pouvaient provoquer une interruption ou un trouble de leur exécution. Jusqu'aux années 1980, cette dernière approche - la neuropsychologie - a constitué la méthode expérimentale prédominante pour l'étude des relations entres structures et fonctions cérébrales. Elle est cependant limitée parce qu'elle tente d'inférer le fonctionnement du cerveau normal à partir de l'observation de dysfonctionnements de cerveaux lésés. Dans ce contexte, la mise au point au cours des années 1990 de techniques d'imagerie numérique tridimensionnelle permettant d'observer de façon externe chez l'homme vivant l'organisation fonctionnelle de son cerveau, constitue une véritable révolution. La tomographie par émission de positons, l'imagerie par résonance magnétique fonctionnelle et la magnétoencéphalographie sont désormais à même de fournir des cartes spatio-temporelles des événements électriques et métaboliques qui sous-tendent les activités mentales. Ces nouvelles approches des fonctions cognitives ont déjà fourni de nombreux résultats en démontrant que les activités cognitives avaient pour base une modulation d'activité neuronale. Elles devraient également permettre dans l'avenir une nouvelle approche des dysfonctionnements cognitifs apparaissant au détours des maladies neurologiques et psychiatriques.
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son