Canal U

Logo de Canal U

Canal U est le site de référence pour les ressources audiovisuelles de l’enseignement supérieur pour les étudiants et les enseignants regroupant :

- des ressources pédagogiques pour compléter ou enrichir les enseignements, proposées sous forme de cours, de conférences, de clips pédagogiques...

- des ressources scientifiques audiovisuelles dédiées à la recherche et à l’enseignement.

- une université populaire avec des conférences dans toutes les thématiques pour une formation tout au long de la vie

 

Economie et gestion

Environnement et développement durable

Lettres, arts, langues et civilisation

Sciences de la santé et du sport

Sciences fondamentales et appliquées

Sciences humaines, sociales, de l'éducation et de l'information

Sciences juridiques et politiques

Affiche du document Nanotechnologies et perspectives industrielles

Nanotechnologies et perspectives industrielles

Hervé ARRIBART

1h17min21

  • Génie et activités connexes
Pour mettre en oeuvre les nanotechnologies, il faut imaginer des procédés permettant d'organiser, de structurer la matière à l'échelle nanométrique - c'est-à-dire à des échelles comprises entre 1 et 100 nanomètres. C'est à cet aspect Matériaux des nanotechnologies que la conférence de ce soir sera consacrée. Pourquoi des nano-matériaux ? ; comment les élaborer ? Pourquoi les propriétés de la matière changent elles quand elle est hétérogène à des échelles inférieures à 100 nm ? Les effets sont souvent spectaculaires : les métaux peuvent devenir transparents et prendre des couleurs vives, les vitrocéramiques (qui sont des nano-composites verre-cristal) possèdent des propriétés mécaniques et thermiques bien supérieures à celles du verre homogène de même composition. Les explications physiques de ces phénomènes sont connues ; elles font en général appel à des dimensions caractéristiques bien identifiées. Comment procéder pour obtenir ces matériaux nano-structurés? Si de nombreuses voies sont explorées aujourd'hui dans les laboratoires de recherche, peu parmi elles seront compatibles avec les contraintes économiques pesant sur les coûts de production. On sera probablement conduit à privilégier les voies d'élaboration basées sur l'auto-organisation de la matière, prenant exemple sur les matériaux naturels qui sont bien souvent eux-mêmes nano-structurés. Quelques exemples de nanomatériaux bio-inspirés seront présentés.
Accès libre
Affiche du document Nanobiologie : la micromanipulation des molécules

Nanobiologie : la micromanipulation des molécules

Franck JULICHER

1h06min12

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Si l'on regarde une cellule vivante sous le microscope optique, il y a à l'évidence de nombreux phénomènes dynamiques actifs comme : la division et les mouvements cellulaires, le transport d'objets dans la cellule ou encore la formation et disparition de structures intracellulaires comme les organelles. Des macromolécules complexes, qui jouent le rôle de petites machines à l'échelle moléculaire, sont à l'origine de ces phénomènes actifs. Ces molécules agissent en grand nombre dans une cellule vivante, invisible dans le microscope optique du fait de leur petite taille de l'ordre de quelques nanomètres. Les prototypes de ces molécules sont les moteurs moléculaires qui consomment un carburant chimique qu'ils transforment en travail mécanique. Dans les dix dernières années, des techniques de micromanipulation ont permis d'étudier les propriétés mécaniques de ces molécules à l'échelle d'une molécule unique. Des techniques de fluorescence et de pince optique permettent de mesurer des forces de l'ordre de piconewtons et des déplacements de quelques nanomètres. Il existe toute une diversité de moteurs moléculaires : des moteurs linéaires qui se déplacent le long de filaments rigides ; des moteurs rotatifs, qui tournent dans une membrane cellulaire ; des systèmes de moteurs qui génèrent des mouvements oscillatoires, permettant la nage de certains organismes unicellulaires. Enfin, il y a des molécules qui se déplacent le long de la double hélice de l'ADN, le porteur du code génétique. Ces molécules ouvrent l'hélice, dupliquent le code ou créent une copie sur un brin d'ARN. L'étude des propriétés physiques de molécules individuelles par des techniques de micromanipulation est importante pour mieux comprendre leur fonctionnement dans des structures biologiques complexes. Finalement, la fusion de structures artificielles nanotechnologiques avec des molécules individuelles biologiques permet de créer artificiellement des systèmes moléculaires actifs qui représentent un premier pas vers une technologie de moteurs moléculaires.
Accès libre
Affiche du document Les nanotubes et leurs applications

Les nanotubes et leurs applications

Annick LOISEAU

1h21min31

  • Génie et activités connexes
Jusqu'en 1985, les seules formes cristallisées connues de carbone pur étaient le graphite et le diamant. En 1985 trois chercheurs R. Smalley, R. Curl (Rice University, Houston, USA) et H. Kroto (University of Sussex, Grande Bretagne) ont découvert une nouvelle forme de carbone, la molécule de C60 constituée de 60 atomes de carbone répartis sur les sommets d'un polyèdre régulier constitué de facettes hexagonales et pentagonales (Figure 1). Cette molécule a été appelée fullerène et tire son nom de l'architecte américain R. Buckminster Fuller qui construisit la géode du pavillon de l'exposition universelle de Montréal qui a la même forme géométrique. Il a fallu cependant attendre 1990 pour que soit mis au point par D. Huffman et W. Krätschmer (Université de Heidelberg, Allemagne) un procédé de synthèse qui a permis d'obtenir des quantités macroscopiques de ces molécules et notamment des cristaux. De ce moment date réellement le démarrage des études physiques et chimiques sur les fullerènes. La découverte des nanotubes de carbone est quant à elle due à S. Iijima (NEC, Tsukuba, Japon) qui l'identifie par microscopie électronique dans un sous produit de synthèse des fullerènes. Un nanotube de carbone est un objet tubulaire de dimension nanométrique en diamètre et de longueur micrométrique. Il est constitué d'un feuillet de graphite enroulé sur lui même de façon à former un cylindre fermé aux deux extrémités par deux demi-fullerènes (Figure 1). Depuis, différentes méthodes de synthèse spécifiques ont été mises au point et ont permis l'étude en laboratoire de la structure et des propriétés physiques et chimiques de ces objets. Ces recherches ont pris un essor extraordinaire tant sont spectaculaires à la fois la structure de cet objet et ses propriétés dans différents domaines allant de la mécanique à la nanochimie en passant par la nanoélectronique et les effets de pointe sous champ électrique. Des applications sont même d'ores et déjà à l'ordre du jour. La conférence aura pour objet de présenter l'état actuel des recherches sur les nanotubes et les enjeux pour les développements futurs. Elle se structurera de la façon suivante. Après avoir présenté le nanotube dans la famille des structures du carbone, je décrirai sa structure et son identification structurale et chimique à l'aide de la microscopie électronique en transmission dont je rappellerai le principe de façon simple. Je ferais le point ensuite sur les différentes méthodes de synthèse des nanotubes et sur les modèles qui sont actuellement avancés pour expliquer les mécanismes de formation de ces objets de façon à discuter du problème d'un dispositif de synthèse contrôlée à grande échelle, qui est un des enjeux pour les développements futurs d'applications et l'utilisation du nanotube comme nanomatériau. La dernière partie de l'exposé sera consacré aux propriétés extraordinaires de ces objets de façon à montrer l'intérêt unique que ces objets présentent aussi bien pour les sciences fondamentales que pour les applications. Concernant le développement d'applications potentielles, je m'efforcerai de mettre en relief les défis à relever pour passer de l'objet de laboratoire au nanomatériau et à son utilisation à une échelle macroscopique.
Accès libre
Affiche du document Nano-électronique et informatique

Nano-électronique et informatique

Claude WEISBUCH

1h10min34

  • Physique
  • Génie et activités connexes
Les révolutions de l' information et des communications sont un des faits marquants du siècle et vont continuer à bouleverser dans ce nouveau siècle tous les domaines de l'activité humaine, y compris nos modes de vie. Ces révolutions sont nées du codage de l'information sous forme de paquets d'électrons (les " grains " d'électricité) ou de photons (les " grains " de lumière) (quelques dizaines de milliers de chaque pour l'élément d'information, le " bit "), et la capacité de manipuler et transmettre ces paquets d'électrons ou de photons de manière de plus en plus efficace et économique. À la base de cette capacité se trouvent les matériaux semi-conducteurs. Rien ne prédisposait ces matériaux à un tel destin : ils ont des propriétés " classiques " médiocres, que ce soit mécaniques, thermiques, optiques ou électriques. C'est justement les propriétés moyennes des semi-conducteurs qui les rendent " commandables " : par exemple, leur comportement électrique a longtemps semblé erratique, car très sensible aux " impuretés ". Cette capacité à changer de conductivité électrique, devenue " contrôlée " par la compréhension physique des phénomènes et l'insertion locale d'impuretés chimiques, permet de commander le passage de courant par des électrodes. On a alors l'effet d'amplification du transistor, à la base de la manipulation électronique de l'information. La sensibilité des semi-conducteurs aux flux lumineux en fait aussi les détecteurs de photons dans les communications optiques, et le phénomène inverse d'émission lumineuse les rend incontournables comme sources de photons pour les télécommunications, et bientôt pour l'éclairage. Les progrès des composants et systèmes sont liés aux deux démarches simultanées d'intégration des éléments actifs sur un même support, la " puce ", et de miniaturisation. Une des immenses surprises a été le caractère " vertueux " de la miniaturisation : plus les composants sont petits, meilleur est leur fonctionnement ! On a pu ainsi gagner en trente-cinq ans simultanément plusieurs facteurs de 100 millions à 1 milliard, en termes de complexité des circuits, réduction de coût (la puce de plusieurs centaines de millions de transistors coûte le même prix qu'un transistor dans les années 60), fiabilité, rendement de fabrication. Le problème des limites physiques est cependant aujourd'hui posé : jusqu'où la miniaturisation peut-elle continuer ? Combien d'atomes faut-il pour faire un transistor qui fonctionne encore ? Y-a t'il d'autres matériaux que les semi-conducteurs qui permettraient d'aller au delà des limites physiques, ou encore d'autres moyens de coder l'information plus efficaces que les électrons ou les photons ? Ce sont les questions que se pose aujourd'hui le physicien, cherchant à mettre en difficulté un domaine d'activité immense qu'il a contribué à créer. En savoir plus : http://pmc.polytechnique.fr/ weisbuch/microelectronique
Accès libre
Affiche du document Qu'entend-on par nanotechnologies ?

Qu'entend-on par nanotechnologies ?

Henry VAN DAMME

1h22min25

  • Génie et activités connexes
Que sont les Nanotechnologies ? Imaginez que l'on puisse fabriquer les matériaux, les objets et les dispositifs dont nous avons besoin avec autant de précision que la Nature lorsqu'elle construit une cellule, un organe ou un organisme : en choisissant chaque molécule qui entrera dans la construction de l'édifice, en choisissant la manière de les assembler, en choisissant la manière de construire et d'emboîter des niveaux de plus en plus complexes d'organisation. La nature même de ce que nous fabriquons en serait changée. Non pas que nous donnerions vie à nos créations, mais leurs caractéristiques et les fonctions que l'on pourrait en attendre seraient infiniment plus riches que celles que nous connaissons. Construire un matériau aussi solide et résistant au choc que la nacre, un actionneur qui serait un véritable muscle artificiel, un filtre aussi efficace et peu énergivore que le rein, un tissus dont les caractéristiques changeraient en fonction de la température et de l'humidité, des capsules moléculaires capables de délivrer un médicament sur une cible précise, un anticorps artificiel capable de détecter des cellules malignes et de les éliminer, un calculateur dont le coeur serait constitué de quelques molécules ou même d'une seule d'entre elles,... Nous sommes encore loin de la plupart de ces réalisations, mais la décennie qui vient de s'écouler a vu de tels progrès dans les deux éléments indispensables -la maîtrise du très petit et la maîtrise du complexe- que l'on peut raisonnablement espérer y arriver. On sait désormais, grâce aux microscopes à effet tunnel et à force atomique, non seulement « voir » les atomes, mais aussi les manipuler un par un, explorer tous les recoins d'une molécule ou encore la déformer pour étudier sa réaction, ou encore y accrocher un prolongement artificiel. On sait marier la chimie du carbone -celle des molécules et du monde vivant- avec la chimie du monde minéral. On connaît aussi de mieux en mieux la sociologie des molécules, les lois qui régissent la manière dont elles vont s'assembler entre elles pour former des entités plus grosses : des membranes, des capsules,... On a compris comment les propriétés d'un petit morceau de matière changent lorsque sa taille devient très petite et on en a tiré profit pour fabriquer de nouvelles briques pour la construction des matériaux. Les nanotechnologies constituent les différentes facettes de cette démarche, qui change fondamentalement notre rapport à la matière.
Accès libre
Affiche du document Géographie et observation par satellite

Géographie et observation par satellite

Catherine MERING

1h15min48

  • Sciences de la vie, Biologie
  • Génie et activités connexes
  • Méthodes de la géographie. Explorations et voyages
La géographie s'intéresse aux structures spatiales et aux processus d'origine anthropique et naturelle qui les produisent. La question se pose alors d'observer ces structures de la façon la plus objective et la plus directe possible. Depuis l'avènement de la photographie aérienne et de la télédétection, les géographes ont à leur disposition une source d'information irremplaçable pour observer, analyser et cartographier ces structures sous leur forme la plus directement perceptible et mesurable, c'est à dire les paysages.
Les photographies aériennes, qui ont été prises de façon systématique à partir des années 50 leur permettaient déjà d'observer le paysage en laboratoire, d'en délimiter les différentes unités pour produire des croquis interprétatifs et enfin des cartes. Au début des années 70, les images multispectrales, prises de façon systématique sur l'ensemble du globe par le satellite Landsat MSS inauguraient la série de prises de vue périodiques de la surface terrestre sous forme d'images numériques. Les méthodes statistiques et informatiques allégeaient désormais sa tâche en classant automatiquement les points de l'image, l'aidant ainsi à produire plus rapidement et de façon plus objective une carte des paysages de la scène étudiée. L'avancée incontestable que constituait la télédétection satellitaire et l'accès aux images numériques de la Terre, ne remettait pas en cause l'intérêt des photographies aériennes . En effet, le pouvoir de résolution de ces nouvelles images était encore insuffisant puisqu'il ne permettait pas de distinguer les tissus urbains, les lieux d'habitats dispersés, ni les paysages complexes et discontinus comme les steppes et les savanes de la zone intertropicale.
Les satellites SPOT et Landsat Thematic Mapper, lancés au milieu des années 80, allaient combler ce fossé: il était désormais possible d'étudier de nombreuses catégories de paysages, quel que soit leur niveau de complexité. Un problème demeurait cependant : les prises de vues effectuées par les capteurs comme ceux de SPOT et Landsat dits "passifs" parce qu'ils ne font qu'enregistrer l'énergie renvoyée par la surface, sont difficilement exploitables en période de forte nébulosité où les paysages sont totalement masqués par les nuages. Mais depuis les années 90, grâce aux images radar des satellites ERS et JERS , l'observation des paysages peut se faire indépendamment des conditions climatiques et météorologiques, ce qui ouvre la voie à l'étude par satellite des zones tropicales et équatoriales où l'atmosphère est rarement limpide ou ceux des zones boréales éclairées la plupart du temps par une lumière rasante.
Les géographes, disposent donc aujourd'hui d'une immense banque d'images sur les paysages terrestres. Ces archives, acquises depuis environ un demi-siècle continuent de s'enrichir d'images numériques produites par des capteurs passifs ou actifs, prises sous des angles variés et à des résolutions de plus en plus grandes. A l'aube du troisième millénaire, il ne s'agira plus seulement pour eux de faire un inventaire des paysages en les cartographiant, mais d'analyser et de mesurer leurs transformations : En effet, ces transformations qu'elles soient très rapides quand elles sont dues à des catastrophes naturelles, comme les séismes, les éruptions volcaniques, les cyclones ou les inondations ou plus lentes lorsqu'elles sont liées à l'évolution des sociétés telles la déforestation, la déprise agricole ou la croissance urbaine sont désormais directement observables par télédétection.
Accès libre
Affiche du document Les composites thermostructuraux

Les composites thermostructuraux

Pierre BETIN

1h15min19

  • Génie et activités connexes
Armer les matériaux en incorporant en leur sein matriciel un renfort fibreux, et accroître ainsi leur tenue mécanique, est une démarche classique depuis le torchis jusqu'au composite, en passant par le béton armé. Il est vrai que la nature nous en offre un exemple achevé avec le bois. La course à l'espace et l'essor du transport aérien ont, depuis trente ans, accéléré le développement des composites. Des fibres de très haute résistance et des polymères nouveaux ont été mis sur le marché. Le technologue en a tiré parti pour bâtir des textures et mettre au point des matrices conduisant à des composites performants, légers, compétitifs et durables. Parallèlement, l'ingénieur a appris à concevoir et à construire composite en adoptant des architectures dépouillées, en choisissant des formes simples et en réduisant le nombre de pièces. Dans la famille des composites, les composites thermostructuraux constituent une niche de haut de gamme qui illustre bien les enjeux stratégiques et les défis technologiques. La raison d'être de ces composites thermostructuraux, à base de fibres et de matrices en carbone ou en céramique, est de répondre aux besoins de la mécanique thermique : celle qui doit encore fonctionner à des températures supérieures à 1 000°. Plus réfractaires et plus légers que les métaux, moins fragiles que le carbone ou la céramique monolithique, ils ouvrent une nouvelle voie de progrès.
Accès libre
Affiche du document Les alliages métalliques pour conditions extrêmes

Les alliages métalliques pour conditions extrêmes

André PINEAU

1h32min36

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Les métaux et leurs alliages ont toujours joué un rôle primordial dans le développement de nos sociétés. Ils ont toujours contribué à la résolution de bon nombre de problèmes de société incontournables. Plutôt que de faire un inventaire, on s'efforcera de montrer les diverses étapes à franchir dans le développement d'un alliage métallique destiné à remplir une fonction donnée. On illustrera également les développements des grandes disciplines (Chimie, Physique, Mécanique, Simulation Numérique) qui ont largement contribué à la métallurgie. A cet effet, on rappellera tout d'abord les spécificités physiques des métaux et alliages métalliques. On montrera à ce propos comment il a été possible de profiter de certains traits spécifiques favorables et de surmonter quelques handicaps, comme la densité. Parmi les situations extrêmes envisagées, on se restreindra à celles qui font appel à la résistance mécanique des métaux et des alliages métalliques en traitant successivement le cas des très basses températures (transport de gaz liquéfiés), des très grandes vitesses de déformation (" crash " automobile), des températures élevées (turbines aéronautiques) et celui de l'irradiation aux neutrons (réacteurs électronucléaires). On conclura en envisageant un certain nombre d'applications pour lesquelles le développement de nouveaux alliages métalliques reste un verrou technologique et pose de réels défis scientifiques et techniques.
Accès libre
Affiche du document Les matériaux intelligents

Les matériaux intelligents

Joël DE ROSNAY

1h11min28

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Nous avons été habitués aux matériaux traditionnels (bois cuir, laine...) et connu la révolution des matières plastiques et des composites. Voici celle des matériaux intelligents capables de changer de forme, de couleur ou de conductivité en fonction de leur environnement. Les alliages à mémoire de forme, les matériaux piézo-électriques, magnétoscrictifs ou électrorhéologiques connaissent déjà de nombreuses applications. Des exemples en sont donnés dans le domaine de l'aérospatiale, de l'automobile, de la médecine, de la robotique ou du bâtiment. Mais déjà, de nouveaux matériaux intelligents sortent des laboratoires, s'inspirant de plus en plus des propriétés des systèmes biologiques. Grâce aux nanotechnologies, à des outils comme le microscope à effet tunnel ou le microscope à force atomique, il devient possible de les produire par un usinage à l'échelle de l'infiniment petit. On crée notamment des structures supramoléculaires, des polymères conducteurs et semiconducteurs, des textiles intelligents, des membranes sélectives ou des peaux artificielles. Avec de nombreuses applications dans le domaine militaire, dans celui de l'informatique et des microprocesseurs, dans la bioélectronique ou les biocapteurs. Le futur des matériaux intelligents passe par une intégration de plus en plus étroite entre supports physiques et biomatériaux. Le bio-ordinateur à ADN, les nanolabos, les MEMS, ou les biopuces implantables fascinent et inquiètent tout à la fois les scientifiques et le public. Un diaporama présente les avancées les plus récentes dans ces domaines. Les matériaux intelligents du futur ouvrent la voie à des interfaces plus étroites entre l'homme et les machines, conduisant progressivement à l'émergence de " l'homme symbiotique ".
Accès libre
Affiche du document Les biomatériaux

Les biomatériaux

Laurent SEDEL

1h01min44

  • Sciences médicales. Médecine
  • Génie et activités connexes
Les biomatériaux représentent une des grandes avancées thérapeutiques de ces quarante dernières années. Définis comme des matériaux travaillant sous contrainte biologique, voués au remplacement d'une fonction ou d'un organe, ils sont présents dans de très nombreuses stratégies thérapeutiques. Selon la définition de Chester (1981), il s'agit de tout matériau non vivant utilisé dans un dispositif médical et visant à remplacer ou traiter un tissu, organe ou une fonction avec une durée de contact supérieure à trois semaines. On estime à environ 3,2 millions les personnes qui en France sont porteuses d'un biomatériau. Ces derniers posent des problèmes scientifiques qui représenteront la substance centrale de cet exposé, mais posent aussi des problèmes économiques, éthiques, réglementaires et industriels qui ne sauraient être passés sous silence sans avoir une approche par trop réductrice. Il y a souvent confusion entre biomatériau et bio matériel. Il est en fait habituel de confondre ces deux notions même si au sens strict il ne faudrait parler que de biomatériau, c'est à dire une partie constituante du bio matériel. Élément primordial de certaines stratégies thérapeutiques, les biomatériaux partagent avec le médicament les exigences de sécurité, fiabilité, reproductibilité. D'utilisation plus récente, ils n'ont cependant pas atteint les mêmes niveaux d'exigence et pourtant la responsabilité est immense puisque si un traitement médicamenteux peut être interrompu à tout moment, un biomatériau une fois implanté ne pourra être retiré que lors d'une nouvelle intervention chirurgicale.
Accès libre
Affiche du document Les batteries et piles dans un environnement durable

Les batteries et piles dans un environnement durable

Jean-François FAUVARQUE

1h05min25

  • Génie et activités connexes
Les générateurs électrochimiques transforment l'énergie chimique directement en énergie électrique. Ceux que nous utilisons habituellement sont caractérisés par leur autonomie, leur souplesse d'utilisation et leur discrétion. Une pile transforme de la matière puis est rejetée. Les produits qu'elle contient ne doivent donc pas être gênants pour l'environnement. Un accumulateur utilise mieux les matériaux qu'il contient, car il peut être rechargé électriquement. Le développement de nouveaux accumulateurs Ni-MH , Li-ion, …, prend une importance économique croissante, dans le domaine des télécommunications qui privilégie la miniaturisation, dans le domaine spatial, qui privilégie la fiabilité, dans le domaine du véhicule électrique ou hybride qui privilégie la cyclabilité et l'énergie cumulée. L'énergie embarquée à bord d'un générateur électrochimique apparaît modeste devant celle fournie par la combustion des hydrocarbures. C'est pourquoi se développent les piles à combustible. Comme les moteurs thermiques, elles utilisent l'air ambiant. Les piles à combustible ont un meilleur rendement énergétique et utilisent mieux les carburants fossiles. Elles sont bien adaptées à l'utilisation de l'hydrogène, combustible accessible au moyen des énergies renouvelables. Les baisses de prix attendues leur permettront de trouver une place dans une économie de développement durable.
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son