Canal U

Logo de Canal U

Canal U est le site de référence pour les ressources audiovisuelles de l’enseignement supérieur pour les étudiants et les enseignants regroupant :

- des ressources pédagogiques pour compléter ou enrichir les enseignements, proposées sous forme de cours, de conférences, de clips pédagogiques...

- des ressources scientifiques audiovisuelles dédiées à la recherche et à l’enseignement.

- une université populaire avec des conférences dans toutes les thématiques pour une formation tout au long de la vie

 

Economie et gestion

Environnement et développement durable

Lettres, arts, langues et civilisation

Sciences de la santé et du sport

Sciences fondamentales et appliquées

Sciences humaines, sociales, de l'éducation et de l'information

Sciences juridiques et politiques

Affiche du document 20 000 liens sous les mers : pipeline, acheminement du pétrole, sécurité des installations

20 000 liens sous les mers : pipeline, acheminement du pétrole, sécurité des installations

Alain Marion

1h04min24

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Avec l'essor des développements pétroliers offshore en grande profondeur, les conduites sous-marines ont pris une importance technologique considérable. Ces conduites servent non seulement à transporter les hydrocarbures produits des têtes de puits sous-marines vers les plates-formes de production, mais également à véhiculer les fluides d'injection, eau ou gaz, en direction du réservoir. Des ombilicaux, assemblés hélicoïdaux de composants électro-hydrauliques, sont utilisés pour le contrôle et l'opération des équipements sous-marins - têtes de puits, collecteurs, vannes, pompes sous-marines, ... Les principales méthodes d'installation de ces conduites sous-marines seront brièvement décrites, pose en S, en J, en déroulé ou pose par remorquage. Leurs domaines d'application privilégiés seront également mentionnés. Parmi les technologies de conduites sous-marines, on retiendra les conduites rigides traditionnelles, en simple ou double enveloppe, ou bien assemblées en faisceau, ainsi que les conduites flexibles. Ces dernières, création originale de l'institut Français du Pétrole, sont un assemblage de couches indépendantes constituées de gaines thermoplastiques extrudées et de nappes de fils d'acier enroulés en hélice. Comme pour les conduites rigides classiques, le dimensionnement de ces conduites flexibles repose sur les conditions opératoires requises, en particulier relatives aux fluides transportés - pression, température, composition chimique. Les difficultés spécifiques introduites par l'utilisation de ces produits en mer ultra profonde seront ensuite évoquées, en insistant particulièrement sur les aspects mécaniques liés à la pression hydrostatique ainsi que les aspects thermodynamiques liés à la gestion de la veine fluide sans oublier les contraintes associées à la méthode de pose. Le cas particulier des liaisons fond-surface permettant de relier la canalisation sous-marine au support de production flottant sera étudié. L'influence de la nature du support de production sur le choix des configurations, le comportement dynamique des conduites dans la tranche d'eau sous les sollicitations environnementales, la fatigue des installations et des équipements associés seront évoqués. De nouvelles technologies liées à l'utilisation de fibres optiques permettent désormais d'apporter aux opérateurs pétroliers la faculté de surveiller leurs installations en temps réel. Cependant, les schémas de développement ou concepts d'architecture sous-marine varient selon les zones géographiques et l'expérience spécifique des opérateurs pétroliers, ce qui explique la grande diversité des solutions technologiques utilisées. Enfin, nous conclurons ce bref panorama par une présentation rapide de systèmes de conduites sous-marines installés dernièrement dans les principales zones du globe. La mise en production de champs dans des profondeurs entre 1 500m et 2 000m de profondeur d'eau fait désormais partie de notre quotidien et nous développons déjà les solutions qui nous permettront d'atteindre la tranche 2 500 à 3 000 m, dans laquelle les opérations de forage ont déjà lieu.
Accès libre
Affiche du document Du pétrole et du gaz aux plastiques

Du pétrole et du gaz aux plastiques

Joëlle CASTEL

1h12min34

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Gaz naturel et pétrole et tous les hydrocarbures en général - sont des matières premières familières, que nous associons d'emblée à la production d'énergie : centrales électriques, carburants automobiles, ainsi que chauffage domestique au gaz et au fioul. Mais en parallèle de cet emploi en tant que combustibles, ces ressources naturelles sont les matières premières de base de la pétrochimie, qui fournit d'innombrables matériaux synthétiques aujourd'hui indispensables à notre monde moderne. Du caoutchouc aux divers plastiques, en passant par les fibres synthétiques, les solvants et colorants, les engrais et même les médicaments, les hydrocarbures sont omniprésents dans notre quotidien. Si les principes de base de la pétrochimie sont connus depuis le 19ème siècle, c'est surtout après la deuxième guerre mondiale qu'elle a connu un développement important. Mais ce n'est pas pour autant une industrie vieillissante, car le renchérissement du coût des matières premières a conduit à une recherche de la performance technique tant au niveau efficacité qu'au niveau coût. Cette industrie a également su s'adapter aux contraintes environnementales de plus en plus sévères en vigueur aujourd'hui. Requérant d'énormes investissements en capital, elle fait appel à des technologies complexes pour la fabrication de produits de haute pureté. Sans avoir pour ambition de décrire de façon exhaustive toutes les technologies de transformation du gaz naturel et du pétrole, cette présentation passe en revue quelques unes des grandes filières de transformation de ces matières premières aboutissant à des produits de synthèse bien connus tels que les engrais, le polystyrène ou le polyéthylène.
Accès libre
Affiche du document Méga usine, méga défi : l'usine de gaz naturel liquéfié

Méga usine, méga défi : l'usine de gaz naturel liquéfié

Marc DUVAL

1h02min56

  • Génie chimique et techniques connexes, chimie industrielle
  • Bâtiments, Construction
Les avancées technologiques, la mise en valeur du développement durable, la prise en compte d'un contenu local, la forte demande mondiale en énergie par rapport aux capacités de production ainsi que les regroupements récents des grands donneurs d'ordre sont autant d'éléments qui font que les nouvelles usines sont de plus en plus grandes, intégrées et complexes. Ainsi la méga usine, qui était une exception il y a dix ans, est devenue monnaie courante. Pour relever ces nouveaux défis, l'ingénierie industrielle s'est adaptée, a grandi en taille, s'est internationalisée. Et il est maintenant fréquent que plusieurs grandes entreprises internationales s'associent entre elles pour exécuter ces méga projets dont l'ingénierie est réalisée aux quatre coins du monde. En même temps, la protection de l'environnement, la sécurité, le contrôle des risques, la maîtrise des délais de plus en plus courts sont devenus omniprésents dans toutes les phases du projet, que ce soit pendant l'avant-projet, la phase d'ingénierie ou celle de construction. A travers l'exemple d'une usine de liquéfaction de gaz naturel, énergie propre par excellence, nous expliquerons au cours de cette conférence en quoi consiste ce type d'usine, quels en sont les défis majeurs et surtout comment les femmes et les hommes qui composent les équipes de réalisation d'une telle usine sont organisés pour réussir ces méga projets et se préparent ainsi aux nouveaux défis qui les attendent demain.
Accès libre
Affiche du document La construction d'une usine : du virtuel au réel

La construction d'une usine : du virtuel au réel

Anne POULIQUEN

1h04min52

  • Génie chimique et techniques connexes, chimie industrielle
  • Bâtiments, Construction
Les projets d'usines pétrochimiques et de plateformes actuellement en cours de développement dans le monde sollicitent de façon de plus en plus exigeante les capacités des sociétés d'ingénierie. Comment réaliser, dans des délais raccourcis, (afin d'assurer rapidement la mise en production !) des mastodontes, qui seront nos usines de demain ? Nous aborderons les différents défis de l'ingénierie et les moyens mis en oeuvre pour y répondre : notamment, les simulations et le virtuel. Comment, ces dix dernières années, le développement des technologies de l'information, des outils de calcul, des techniques de communication, des outils de conception, a permis de tenir les délais d'études, des cycles d'approvisionnement et de construction impliquant des centaines d'intervenants répartis sur l'ensemble de la planète… Les Ingénieur Chimistes de l'usine, le Procédé, déploient des outils de calcul et de simulation pour définir d'une puissance toujours accrue pour définir les étapes de transformation des fluides et leurs contraintes, et optimiser les appareils critiques. Les Ingénieur Equipements traduisent ces contraintes, afin de définir, par leurs propres logiciels, les caractéristiques des appareils. Les Acheteurs lancent leurs appels d'offres dans le monde entier, via une plateforme d'échanges internet. Les Ingénieurs de Bureau d'Etudes développent les données Procédé et Mécanique, afin de réaliser la maquette virtuelle et dimensionnée de l'usine, maquette intelligente qui sera le support des revues avec le Client. Cette maquette est également la source de tous les plans utilisés sur le chantier… pour construction, voire la formation des Opérateurs… Ces différentes activités, souvent menées en parallèle, seront développées sous l'angle de leurs moyens numériques et outils de communication.
Accès libre
Affiche du document Médicaments et chimie : un brillant passé et un vrai futur

Médicaments et chimie : un brillant passé et un vrai futur

Bernard MEUNIER

1h33min58

  • Chimie, Cristallographie, Mineralogie
  • Sciences médicales. Médecine
  • Génie chimique et techniques connexes, chimie industrielle
Très tôt l’homme a utilisé les produits de la Nature pour traiter les différentes maladies auxquelles il était confronté. Les premiers traités de chimie thérapeutique moderne, décrivant la relation entre un composé chimique et une activité thérapeutique datent maintenant de plusieurs siècles. Toutefois, c'est au tournant du 19ème et du 20ème siècle avec le développement de la chimie moléculaire et de la microbiologie que la chimie thérapeutique prend son essor. L'évolution rapide de ces deux disciplines a conduit aux premiers antibiotiques. Sait-on encore que la production à grande échelle de la pénicilline a mobilisé aux Etats-Unis entre 1943 et 1945 plusieurs centaines de scientifiques, autant que pour la mise au point des premières bombes atomiques ? Tout au long du 20ème siècle, l'application stricte des règles d'hygiène pasteuriennes et la mise au point de nombreux médicaments font régresser les maladies et la durée de vie augmente. Beaucoup reste à faire, mais la création de nouveaux médicaments élaborés par synthèse chimique semble marquer le pas à partir des années 1980 à 1990. Les apports récents de la génomique et la protéomique donnent l'espoir d'accéder à de nouvelles méthodes de découvertes de médicaments. La chimie thérapeutique est-elle condamner à un déclin irréversible ou bien va-t-elle refleurir à nouveau, en intégrant les nouveaux outils de la biologie moléculaire, et apporter de nouveaux espoirs dans le traitement de maladies émergeantes ou ré-émergeantes ? L'innovation thérapeutique demande la mise en place des synergies fortes entre chercheurs de quatre à cinq disciplines différentes ; comment favoriser ces synergies ? Les enjeux de l'innovation thérapeutique concernent non seulement le domaine de la santé, mais aussi celui de l'économie. La découverte et le développement de nouveaux médicaments mobilisent de nombreux effectifs. L'Europe continentale gardera t-elle sa place dans l'innovation thérapeutique au 21ème siècle ?
Accès libre
Affiche du document Machines et moteurs moléculaires : de la biologie au molécules de synthèse

Machines et moteurs moléculaires : de la biologie au molécules de synthèse

Jean-Pierre SAUVAGE

1h07min25

  • Sciences de la vie, Biologie
  • Génie chimique et techniques connexes, chimie industrielle
De nombreux processus biologiques essentiels font intervenir des moteurs moléculaires (naturels). Ces moteurs sont constitués de protéines dont la mise en mouvement, le plus souvent déclenchée par l'hydrolyse d'ATP (le "fioul" biologique), correspond à une fonction précise et importante. Parmi les exemples les plus spectaculaires, nous pouvons citer l'ATPsynthase, véritable moteur rotatif responsable de la fabrication de l'ATP. Pour le chimiste de synthèse, l'élaboration de molécules totalement artificielles, dont le comportement rappelle celui des systèmes biologiques, est un défi formidable. L'élaboration de "machines" et "moteurs" moléculaires de synthèse représente un domaine particulièrement actif, qui a vu le jour il y a environ une douzaine d'années. Ces machines sont des objets nanométriques pour lesquels il est possible de mettre en mouvement une partie du composé ou de l'assemblée moléculaire considérée, par l'intervention d'un signal envoyé de l'extérieur, alors que d'autres parties sont immobiles. Si une source d'énergie alimente le système de manière continue, et qu'un mouvement périodique en résulte, l'assemblée moléculaire en mouvement pourra être considérée comme un "moteur". D'ores et déjà, certaines équipes de chimiste ont pu fabriquer des moteurs rotatifs minuscules, des moteurs linéaires mis en mouvement par un signal électronique ou des "muscles" moléculaires de synthèse, capables de se contracter ou de s'allonger sous l'action d'un stimulus externe. Quelques exemples représentatifs seront discutés lors de l'exposé. Un certain nombre de questions ayant trait aux applications potentielles du domaine de "nanomécanique moléculaire" seront abordées : - "ordinateurs moléculaires", pour lesquels certains chercheurs fondent de grands espoirs, stockage et traitement de l'information au niveau moléculaire, - robots microscopiques, capables de remplir une grande variété de fonctions allant de la médecine à la vie de tous les jours, - transport sélectif de molécules ou d'ions à travers des membranes.
Accès libre
Affiche du document Colloïdes et biotechnologies

Colloïdes et biotechnologies

Jérôme BIBETTE

55min53

  • Chimie, Cristallographie, Mineralogie
  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
L'exposé introduit lutilisation des colloïdes dans le domaine du diagnostic biologique. Nous introduirons les bases de la physico chimie des colloïdes ainsi que les approches classiques du diagnostic biologique: test d'agglutination à partir de particules de Latex ou dor, test ELISA avec des particules magnétiques. Ensuite nous présenterons une nouvelle approche de diagnostic basée sur la formation de nano structures colloïdales magnétiques. Le principe repose sur l'aptitude de certains colloïdes magnétiques, à la fois suffisamment petits et susceptibles, à former rapidement des lignes réversibles sous champ. Nous montrerons que cette solution colloïdale change de couleur sous l'action d'un champ magnétique, conséquence de la diffraction des chaînes auto assemblées, et comment ce phénomène peut conduire à la détermination du profil de force entre colloïdes. Si les particules sont greffées par un anticorps, alors en présence de l'antigène spécifique capable de ponter deux anticorps, les lignes peuvent devenir permanentes et quasi irréversibles. Nous discuterons comment la persistance des lignes peut révéler de manière très sensible la quantité d'antigène introduite, et pourquoi la force magnétique imposée à chaque colloïde peut accélérer la complexation antigène anticorps. Nous finirons par une introduction à l'utilisation des colloïdes en micro fluidique. Nous montrerons comment les auto assemblages magnétiques peuvent devenir des matrices de séparation très efficaces pour des entités biologiques comme des ADN génomiques ou des cellules.
Accès libre
Affiche du document Nanobiologie : la micromanipulation des molécules

Nanobiologie : la micromanipulation des molécules

Franck JULICHER

1h06min12

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Si l'on regarde une cellule vivante sous le microscope optique, il y a à l'évidence de nombreux phénomènes dynamiques actifs comme : la division et les mouvements cellulaires, le transport d'objets dans la cellule ou encore la formation et disparition de structures intracellulaires comme les organelles. Des macromolécules complexes, qui jouent le rôle de petites machines à l'échelle moléculaire, sont à l'origine de ces phénomènes actifs. Ces molécules agissent en grand nombre dans une cellule vivante, invisible dans le microscope optique du fait de leur petite taille de l'ordre de quelques nanomètres. Les prototypes de ces molécules sont les moteurs moléculaires qui consomment un carburant chimique qu'ils transforment en travail mécanique. Dans les dix dernières années, des techniques de micromanipulation ont permis d'étudier les propriétés mécaniques de ces molécules à l'échelle d'une molécule unique. Des techniques de fluorescence et de pince optique permettent de mesurer des forces de l'ordre de piconewtons et des déplacements de quelques nanomètres. Il existe toute une diversité de moteurs moléculaires : des moteurs linéaires qui se déplacent le long de filaments rigides ; des moteurs rotatifs, qui tournent dans une membrane cellulaire ; des systèmes de moteurs qui génèrent des mouvements oscillatoires, permettant la nage de certains organismes unicellulaires. Enfin, il y a des molécules qui se déplacent le long de la double hélice de l'ADN, le porteur du code génétique. Ces molécules ouvrent l'hélice, dupliquent le code ou créent une copie sur un brin d'ARN. L'étude des propriétés physiques de molécules individuelles par des techniques de micromanipulation est importante pour mieux comprendre leur fonctionnement dans des structures biologiques complexes. Finalement, la fusion de structures artificielles nanotechnologiques avec des molécules individuelles biologiques permet de créer artificiellement des systèmes moléculaires actifs qui représentent un premier pas vers une technologie de moteurs moléculaires.
Accès libre
Affiche du document Les alliages métalliques pour conditions extrêmes

Les alliages métalliques pour conditions extrêmes

André PINEAU

1h32min36

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Les métaux et leurs alliages ont toujours joué un rôle primordial dans le développement de nos sociétés. Ils ont toujours contribué à la résolution de bon nombre de problèmes de société incontournables. Plutôt que de faire un inventaire, on s'efforcera de montrer les diverses étapes à franchir dans le développement d'un alliage métallique destiné à remplir une fonction donnée. On illustrera également les développements des grandes disciplines (Chimie, Physique, Mécanique, Simulation Numérique) qui ont largement contribué à la métallurgie. A cet effet, on rappellera tout d'abord les spécificités physiques des métaux et alliages métalliques. On montrera à ce propos comment il a été possible de profiter de certains traits spécifiques favorables et de surmonter quelques handicaps, comme la densité. Parmi les situations extrêmes envisagées, on se restreindra à celles qui font appel à la résistance mécanique des métaux et des alliages métalliques en traitant successivement le cas des très basses températures (transport de gaz liquéfiés), des très grandes vitesses de déformation (" crash " automobile), des températures élevées (turbines aéronautiques) et celui de l'irradiation aux neutrons (réacteurs électronucléaires). On conclura en envisageant un certain nombre d'applications pour lesquelles le développement de nouveaux alliages métalliques reste un verrou technologique et pose de réels défis scientifiques et techniques.
Accès libre
Affiche du document Quels textiles pour nos vêtements de demain ?

Quels textiles pour nos vêtements de demain ?

Michel SOTTON

1h12min55

  • Chimie, Cristallographie, Mineralogie
  • Génie chimique et techniques connexes, chimie industrielle
  • Fabrication industrielle, Industries de transformation
Au-delà de l'innovation esthétique qui est au coeur des métiers du Textile et de la Mode et qui relève du domaine des arts plastiques, l'Industrie Textile a toujours su tirer partie des progrès technologiques réalisés par des secteurs connexes (mécanique, chimie) pour accroître sa compétitivité et proposer des produits innovants et différenciateurs. Nous examinerons comment cette co-évolution scientifique et technologique peut se poursuivre au cours du siècle, au contact de nouveaux partenaires (cosmétique, santé, télécommunication, informatique) avec l'émergence de nouveaux savoirs et de nouvelles technologies (nanotechnologie, biotechnologie, N T I C). Une vague naissante de produits textiles innovants se profile, porteuse de poly-fonctionnalités, d'intelligence et qui devrait satisfaire les attentes d'un consommateur toujours plus informé, averti, conscient de sa différence et qui entretient de nouveaux rapports à son corps. Le consommateur exige de plus en plus de qualité dans cette intimité qu'il découvre et cultive entre son corps et ces fibres textiles qui constituent son premier environnement vestimentaire et sensoriel. L'enjeu majeur, dans cette ère, consistera à rencontrer le consommateur autour de réels textiles-services, au coeur desquels, il se retrouvera avec une information ayant du sens pour lui. Enjeu stratégique pour une filière de production qui doit se ponter avec les nouvelles filières de consommation, par une ingénierie plus anthropocentrée, prenant en compte dès les premiers stades de conception des produits, les facteurs humains.
Accès libre
Affiche du document Les matériaux intelligents

Les matériaux intelligents

Joël DE ROSNAY

1h11min28

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Nous avons été habitués aux matériaux traditionnels (bois cuir, laine...) et connu la révolution des matières plastiques et des composites. Voici celle des matériaux intelligents capables de changer de forme, de couleur ou de conductivité en fonction de leur environnement. Les alliages à mémoire de forme, les matériaux piézo-électriques, magnétoscrictifs ou électrorhéologiques connaissent déjà de nombreuses applications. Des exemples en sont donnés dans le domaine de l'aérospatiale, de l'automobile, de la médecine, de la robotique ou du bâtiment. Mais déjà, de nouveaux matériaux intelligents sortent des laboratoires, s'inspirant de plus en plus des propriétés des systèmes biologiques. Grâce aux nanotechnologies, à des outils comme le microscope à effet tunnel ou le microscope à force atomique, il devient possible de les produire par un usinage à l'échelle de l'infiniment petit. On crée notamment des structures supramoléculaires, des polymères conducteurs et semiconducteurs, des textiles intelligents, des membranes sélectives ou des peaux artificielles. Avec de nombreuses applications dans le domaine militaire, dans celui de l'informatique et des microprocesseurs, dans la bioélectronique ou les biocapteurs. Le futur des matériaux intelligents passe par une intégration de plus en plus étroite entre supports physiques et biomatériaux. Le bio-ordinateur à ADN, les nanolabos, les MEMS, ou les biopuces implantables fascinent et inquiètent tout à la fois les scientifiques et le public. Un diaporama présente les avancées les plus récentes dans ces domaines. Les matériaux intelligents du futur ouvrent la voie à des interfaces plus étroites entre l'homme et les machines, conduisant progressivement à l'émergence de " l'homme symbiotique ".
Accès libre
Affiche du document Le béton

Le béton

Paul ACKER

1h23min06

  • Génie chimique et techniques connexes, chimie industrielle
  • Bâtiments, Construction
Le béton est aujourd'hui le matériau le plus utilisé dans le monde, plus que tous les autres matériaux réunis. Sans le béton, on ne pourrait pas réaliser ce qu'on construit aujourd'hui en matière de logement, d'écoles, d'hôpitaux, d'infrastructures de transport. A la fois robuste et universel - on peut le faire partout, dans tous les pays, dans son jardin - le béton est aussi au début d'une profonde mutation : l'ampleur et l'étendue de ses performances mécaniques et physiques augmentent sans cesse, et sa formulation, jusqu'ici très empirique, est en passe de devenir une démarche rationnelle, avec des outils d'ingénieurs construits sur des bases scientifiques qui font appel à toutes les disciplines qui entrent dans ce qu'on appelle aujourd'hui la Science des matériaux. Ceci est le résultat de profonds progrès dans notre compréhension scientifique des mécanismes de prise, de durcissement, de vieillissement, progrès qui ont accompagné l'émergence de la Science des matériaux - ou science des couplages - dont le béton est aujourd'hui l'archétype, puisqu'il est sans doute le seul à avoir mobilisé toutes les disciplines qui la constituent. Quelques exemples de ces progrès de compréhension seront présentés, et illustrés par leurs conséquences concrètes, parfois spectaculaires, sur les chantiers et les ouvrages d'aujourd'hui. Ces progrès devront aussi se traduire dans la qualité de notre environnement quotidien.
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son