Logo de Canal U

Canal U
Affiche du document Les matériaux magnétiques : de la boussole à l'électronique de spin

Les matériaux magnétiques : de la boussole à l'électronique de spin

Michel PIECUCH

59min35

  • Physique
  • Génie et activités connexes
Le mot magnétisme reste chargé de mystères, pourtant les phénomènes magnétiques sont connus depuis trois mille ans et les matériaux magnétiques sont omniprésents dans notre environnement. Le but de cet exposé est de tenter de lever ces mystères et d'expliquer la formidable importance des matériaux magnétiques dans nos sociétés développées. La conférence va débuter par un bref historique des matériaux magnétiques, depuis leur découverte en Asie mineure et en Chine jusqu'aux développements les plus récents. On verra ensuite ce qu'est le magnétisme, le champ ou induction magnétique est produit par une charge électrique en mouvement. C'est une conséquence directe de la théorie de la relativité d'Einstein. Ce champ magnétique induit une force sur toutes les particules en mouvement, c'est là l'origine de toutes les forces magnétiques. A l'échelle atomique ce sont le mouvement des électrons autour des noyaux des atomes et le mouvement propre de ces mêmes électrons (mouvement de rotation) qui sont à l'origine des deux types de moments magnétiques atomiques : le moment orbital et le spin. Les liaisons chimiques tendent à compenser ces moments magnétiques, sauf, dans le cas où survivent à ces liaisons des couches atomiques incomplètes, comme celle des métaux dits de transition ou celles des métaux dit de la famille des terres rares. On abordera, ensuite, un aperçu de la diversité des matériaux magnétiques, les matériaux ferromagnétiques paramagnétiques et diamagnétiques...On montrera les fondements physiques des propriétés magnétiques et on décrira un certain nombre de matériaux spécifiques comme les aimants permanents, les différentes bandes magnétiques ou les mémoires...On terminera cet exposé par une description des tendances actuelles dans la science et la technologie des matériaux magnétiques : le nanomagnétisme et l'électronique de spin.
Accès libre
Affiche du document Suivre les réactions entre les atomes en les photographiant avec des lasers

Suivre les réactions entre les atomes en les photographiant avec des lasers

Jean-Louis Martin

1h20min26

  • Physique
  • Sciences de la vie, Biologie
  • Génie et activités connexes
"Les progrès de l'optique ont conduit à des avancées significatives dans la connaissance du monde du vivant. Le développement des lasers impulsionnels n'a pas échappé à cette règle. Il a permis de passer de l'ère du biologiste-observateur à l'ère du biologiste-acteur en lui permettant à la fois de synchroniser des réactions biochimiques et de les observer en temps réel, y compris in situ. Ce progrès indéniable a néanmoins eu un coût. En effet, à cette occasion le biologiste est (presque) devenu aveugle, son spectre d'intervention et d'analyse étant brutalement réduit à celui autorisé par la technologie des lasers, c'est à dire à quelques longueurs d'onde bien spécifiques. Depuis peu, nous assistons à la fin de cette époque obscure. Le laser femtoseconde est devenu "" accordable "" des RX à l'infrarouge lointain. Il est aussi devenu exportable des laboratoires spécialisés en physique et technologie des lasers. Dans le même temps, la maîtrise des outils de biologie moléculaire et l'explosion des biotechnologies qui en a résulté, ont autorisé une modification à volonté des propriétés - y compris optiques - du milieu vivant. Une imagerie et une spectroscopie fonctionnelles cellulaire et moléculaire sont ainsi en train de se mettre en place. L'exposé présentera à travers quelques exemples, la nature des enjeux scientifiques et industriels associés à l'approche "" perturbative "" du fonctionnement des structures moléculaires et en particulier dans le domaine de la biologie. "
Accès libre
Affiche du document Les neutrinos dans l'Univers

Les neutrinos dans l'Univers

Daniel VIGNAUD

1h12min36

  • Astronomie, Astrophysique, Recherche spatiale, Géodésie
  • Physique
Notre corps humain contient environ 20 millions de neutrinos issus du big bang, émet quelques milliers de neutrinos liés à sa radioactivité naturelle. Traversé en permanence par 65 milliards de neutrinos par cm2 par seconde venus du Soleil, il a été irradié le 23 février 1987 par quelques milliards de neutrinos émis il y a 150000 ans par l'explosion d'une supernova dans le Grand Nuage de Magellan. Les neutrinos sont également produits dans l'interaction des rayons cosmiques dans l'atmosphère ou dans les noyaux actifs de galaxies… Quelle est donc cette particule présente en abondance dans tout l'Univers où elle joue un rôle-clé ? Inventé par W.Pauli en 1930 pour résoudre le problème du spectre en énergie des électrons dans la désintégration b, le neutrino fut découvert par F.Reines et C.Cowan en 1956, auprès du réacteur nucléaire de Savannah River (Caroline du Sud). Il n'a plus depuis quitté le devant de la scène, que ce soit chez les physiciens des particules, les astrophysiciens ou les cosmologistes. Cette particule élémentaire, sans charge électrique, n'est soumise qu'à l'interaction faible, ce qui lui permet de traverser des quantités de matière importantes sans interagir. En 1938, H.Bethe imaginait que des réactions nucléaires de fusion étaient au coeur de la production d'énergie des étoiles, en premier lieu le Soleil. Dans les années 60, les astrophysiciens se lancent dans la construction de modèles solaires et des expérimentateurs dans la construction de détecteurs pour les piéger. Il a fallu attendre 2002 pour comprendre que le déficit de neutrinos solaires observé (le célèbre "problème des neutrinos solaires") était dû à un phénomène lié à la mécanique quantique, appelé l'oscillation des neutrinos. La mise en évidence de cette oscillation a apporté la preuve décisive que les neutrinos avaient une masse non nulle. Nous ferons le point sur cette particule fascinante après les découvertes récentes.
Accès libre
Affiche du document La physique en champs magnétique intense

La physique en champs magnétique intense

Geert RIKKEN

1h14min41

  • Physique
  • Génie et activités connexes
Le champ magnétique semble toujours un peu mystérieux, pourtant les phénomènes magnétiques sont connus depuis presque trois mille ans et ont trouvé des applications partout dans notre vie quotidienne. Le but de cet exposé est à la fois d'expliquer la physique du champ magnétique et de démontrer l'importance des champs magnétiques intenses dans la recherche. La conférence débutera par un bref résumé de la physique des champs magnétiques, à la fois de façon historique et fondamentale. Ensuite, je discuterai trois grands domaines de la physique ou le champ magnétique intervient La manipulation magnétique concerne tous les phénomènes qui génèrent des forces mécaniques sur des objets. L'aimant permanent avec lequel on colle des feuilles sur la porte du frigo, l'électromoteur, la séparation magnétique et la lévitation magnétique sont des exemples parmi tant d'autres. Ces phénomènes ont trouvés beaucoup d'applications, mais sont aussi utilisés comme outils dans la recherche. Le champ magnétique est une perturbation universelle et précise qui permet de sonder la matière et de déterminer beaucoup de paramètres physiques et chimiques. L'exemple le plus connu est l'imagerie médicale par résonance magnétique nucléaire mais il existe beaucoup d'autres sondes basées sur le champ magnétique. Les champs magnétiques intenses peuvent induire des nouveaux états de la matière, en particulier en combinaison avec des basses températures. Dans la physique des solides, plusieurs états exotiques ont été observés, comme des quasi-particules dans les gaz électroniques bidimensionnels, des condensats de Bose-Einstein dans des cristaux et la supraconductivité induite par le champ magnétique.
Accès libre
Affiche du document Magnétisme moléculaire: vers le stockage de l'information sur une molécule - R.Sessoli, M.Verdaguer

Magnétisme moléculaire: vers le stockage de l'information sur une molécule - R.Sessoli, M.Verdaguer

UTLS - la suite

1h27min01

  • Physique
Une conférence du cycle "le magnétisme aujourd’hui : du pigeon voyageur à la spintronique"

Magnétisme moléculaire: vers le stockage de l'information sur une molécule

Par Roberta Sessoli

Professeur, Laboratoire de Magnétisme Moléculaire, Florence

Et Michel Verdaguer

Professeur, Institut Parisien de Chimie Moléculaire, CNRS, Université Pierre et Marie Curie, Paris

Les molécules sont des assemblages d’atomes. Elles sont magnétiques, dia- ou para-magnétiques. Le dioxygène de l’air par exemple, porte un moment magnétique indispensable à notre vie aérobie.

La mécanique quantique permet non seulement de comprendre ce magnétisme moléculaire mais aussi de concevoir des matériaux magnétiques de faible densité, solubles, colorés, biocompatibles, obtenus dans des conditions douces.

La flexibilité de la chimie moléculaire permet d’obtenir des matériaux commutables, des aimants à la température ambiante, des systèmes moléculaires qui se comportent comme des aimants. En les plaçant sur des surfaces, chimistes et physiciens rêvent de l’enregistrement magnétique au stade ultime de miniaturisation, celui de la molécule unique, ..).

En termes simples et à l’aide d’expériences, la conférence brosse un panorama de ce champ de recherche et permet d’entrer dans le monde merveilleux du magnétisme des molécules.
Accès libre
Affiche du document Voyage dans le nanomonde des aimants vers une spintronique moléculaire - Wolfgang Wernsdorfer

Voyage dans le nanomonde des aimants vers une spintronique moléculaire - Wolfgang Wernsdorfer

Wolfgang WERNSDORFER

1h16min19

  • Physique
Une conférence du cycle "le magnétisme aujourd’hui : du pigeon voyageur à la spintronique"
Voyage dans le nanomonde des aimants vers une spintronique moléculaire
Wolfgang Wernsdorfer
Directeur de recherche CNRS, Institut Néel,CNRS Grenoble
L’électronique moléculaire et l’électronique de spin (ou spintronique) sont deux domaines majeurs des nanosciences. Le premier domaine utilise depuis plusieurs années des molécules afin de réaliser des dispositifs à molécule unique pour des applications potentielles en électronique. Le second, en introduisant les effets liés au spin dans les propriétés de transport électronique, a généré les effets géants de magnéto-résistance qui sont à l’origine d’une révolution en électronique.
La conférence montre comment le rapprochement des deux domaines peut émerger une "Spintronique Moléculaire" développant de nouveaux dispositifs qui manipuleront le spin et la charge d’une molécule-aimant unique [1] (Fig.1). L’expertise acquise par les chimistes pour moduler et contrôler les propriétés de ces molécules (spin, anisotropie, potentiel rédox, transitions induites par la lumière ou par le champ électrique…) permet de concevoir des dispositifs à propriétés modulables et à fonctionnalités nouvelles. On montrera les avantages de l’utilisation des systèmes moléculaires dans ce domaine
La conférence présente un domaine émergent, peu exploré à ce jour. Les objectifs principaux relèvent essentiellement de la recherche fondamentale, mais des applications en électronique et information quantique sont envisageables à moyen terme, comme le démontrent les premiers résultats du nouveau groupe créé au sein de l’Institut Néel dans ce nouveau domaine [2,3].

Fig. 1 : Schéma d'un dispositif de spintronique moléculaire. Une molécule magnétique est attachée au "canal" formé d'un nanotube de carbone suspendu et connecté aux électrodes de Pd. Le substrat de silicium dopé constitue une "grille" à potentiel ajustable.
[1] L. Bogani & W. Wernsdorfer. Molecular spintronics using single-molecule magnets. Nature Mat. 7, 179 (2008).
[2] Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T. & Monthioux, M.
Carbon nanotube superconducting quantum interference device. Nature Nanotech. 1, 53-59 (2006).
[3] N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer & F. Balestro,
Quantum phase transition in a single-molecule quantum dot. Nature 453, 633 (2008).
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son